Python 實現PS濾鏡中的徑向模糊特效
實現效果
實現代碼
from skimage import img_as_floatimport matplotlib.pyplot as pltfrom skimage import ioimport numpy as npimport numpy.matlibfile_name=’D:/2020121173119242.png’ # 圖片路徑img=io.imread(file_name)img = img_as_float(img)img_out = img.copy()row, col, channel = img.shapexx = np.arange (col) yy = np.arange (row)x_mask = numpy.matlib.repmat (xx, row, 1)y_mask = numpy.matlib.repmat (yy, col, 1)y_mask = np.transpose(y_mask)center_y = (row -1) / 2.0center_x = (col -1) / 2.0R = np.sqrt((x_mask - center_x) **2 + (y_mask - center_y) ** 2)angle = np.arctan2(y_mask - center_y , x_mask - center_x)Num = 20arr = np.arange(Num)for i in range (row): for j in range (col): R_arr = R[i, j] - arr R_arr[R_arr < 0] = 0 new_x = R_arr * np.cos(angle[i,j]) + center_x new_y = R_arr * np.sin(angle[i,j]) + center_y int_x = new_x.astype(int) int_y = new_y.astype(int) int_x[int_x > col-1] = col - 1 int_x[int_x < 0] = 0 int_y[int_y < 0] = 0 int_y[int_y > row -1] = row -1 img_out[i,j,0] = img[int_y, int_x, 0].sum()/Num img_out[i,j,1] = img[int_y, int_x, 1].sum()/Num img_out[i,j,2] = img[int_y, int_x, 2].sum()/Numplt.figure(1)plt.imshow(img)plt.axis(’off’)plt.figure(2)plt.imshow(img_out)plt.axis(’off’)plt.show()
以上就是Python 實現 PS 濾鏡中的徑向模糊特效的詳細內容,更多關于python 圖片模糊濾鏡的資料請關注好吧啦網其它相關文章!
相關文章: