色综合图-色综合图片-色综合图片二区150p-色综合图区-玖玖国产精品视频-玖玖香蕉视频

您的位置:首頁技術文章
文章詳情頁

python 實現樸素貝葉斯算法的示例

瀏覽:2日期:2022-07-09 13:02:40

特點

這是分類算法貝葉斯算法的較為簡單的一種,整個貝葉斯分類算法的核心就是在求解貝葉斯方程P(y|x)=[P(x|y)P(y)]/P(x) 而樸素貝葉斯算法就是在犧牲一定準確率的情況下強制特征x滿足獨立條件,求解P(x|y)就更為方便了 但基本上現實生活中,沒有任何關系的兩個特征幾乎是不存在的,故樸素貝葉斯不適合那些關系密切的特征

from collections import defaultdictimport numpy as npfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom loguru import loggerclass NaiveBayesScratch(): '''樸素貝葉斯算法Scratch實現''' def __init__(self): # 存儲先驗概率 P(Y=ck) self._prior_prob = defaultdict(float) # 存儲似然概率 P(X|Y=ck) self._likelihood = defaultdict(defaultdict) # 存儲每個類別的樣本在訓練集中出現次數 self._ck_counter = defaultdict(float) # 存儲每一個特征可能取值的個數 self._Sj = defaultdict(float) def fit(self, X, y): ''' 模型訓練,參數估計使用貝葉斯估計 X: 訓練集,每一行表示一個樣本,每一列表示一個特征或屬性 y: 訓練集標簽 ''' n_sample, n_feature = X.shape # 計算每個類別可能的取值以及每個類別樣本個數 ck, num_ck = np.unique(y, return_counts=True) self._ck_counter = dict(zip(ck, num_ck)) for label, num_label in self._ck_counter.items(): # 計算先驗概率,做了拉普拉斯平滑處理,即計算P(y) self._prior_prob[label] = (num_label + 1) / (n_sample + ck.shape[0]) # 記錄每個類別樣本對應的索引 ck_idx = [] for label in ck: label_idx = np.squeeze(np.argwhere(y == label)) ck_idx.append(label_idx) # 遍歷每個類別 for label, idx in zip(ck, ck_idx): xdata = X[idx] # 記錄該類別所有特征對應的概率 label_likelihood = defaultdict(defaultdict) # 遍歷每個特征 for i in range(n_feature): # 記錄該特征每個取值對應的概率 feature_val_prob = defaultdict(float) # 獲取該列特征可能的取值和每個取值出現的次數 feature_val, feature_cnt = np.unique(xdata[:, i], return_counts=True) self._Sj[i] = feature_val.shape[0] feature_counter = dict(zip(feature_val, feature_cnt)) for fea_val, cnt in feature_counter.items(): # 計算該列特征每個取值的概率,做了拉普拉斯平滑,即為了計算P(x|y) feature_val_prob[fea_val] = (cnt + 1) / (self._ck_counter[label] + self._Sj[i]) label_likelihood[i] = feature_val_prob self._likelihood[label] = label_likelihood def predict(self, x): ''' 輸入樣本,輸出其類別,本質上是計算后驗概率 **注意計算后驗概率的時候對概率取對數**,概率連乘可能導致浮點數下溢,取對數將連乘轉化為求和 ''' # 保存分類到每個類別的后驗概率,即計算P(y|x) post_prob = defaultdict(float) # 遍歷每個類別計算后驗概率 for label, label_likelihood in self._likelihood.items(): prob = np.log(self._prior_prob[label]) # 遍歷樣本每一維特征 for i, fea_val in enumerate(x): feature_val_prob = label_likelihood[i] # 如果該特征值出現在訓練集中則直接獲取概率 if fea_val in feature_val_prob: prob += np.log(feature_val_prob[fea_val]) else: # 如果該特征沒有出現在訓練集中則采用拉普拉斯平滑計算概率 laplace_prob = 1 / (self._ck_counter[label] + self._Sj[i]) prob += np.log(laplace_prob) post_prob[label] = prob prob_list = list(post_prob.items()) prob_list.sort(key=lambda v: v[1], reverse=True) # 返回后驗概率最大的類別作為預測類別 return prob_list[0][0]def main(): X, y = load_iris(return_X_y=True) xtrain, xtest, ytrain, ytest = train_test_split(X, y, train_size=0.8, shuffle=True) model = NaiveBayesScratch() model.fit(xtrain, ytrain) n_test = xtest.shape[0] n_right = 0 for i in range(n_test): y_pred = model.predict(xtest[i]) if y_pred == ytest[i]: n_right += 1 else: logger.info('該樣本真實標簽為:{},但是Scratch模型預測標簽為:{}'.format(ytest[i], y_pred)) logger.info('Scratch模型在測試集上的準確率為:{}%'.format(n_right * 100 / n_test))if __name__ == '__main__': main()

以上就是python 實現樸素貝葉斯算法的示例的詳細內容,更多關于python實現樸素貝葉斯算法的資料請關注好吧啦網其它相關文章!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 精品少妇一区二区三区视频 | 亚洲综合视频网 | 日韩手机看片福利精品 | 美女被免费视频网站a国产 美女被免费网站视频软件 美女被免费网站在线软件 美女被免费网站在线视频软件 | 亚洲第一视频网站 | 99国产精品久久久久久久日本 | 美女视频网站色 | 九九热视频在线播放 | 国产欧美在线观看视频 | 毛片看看 | 欧美三级一级片 | 一本久道综合久久精品 | 久久国产热视频 | 久久精品国产一区二区三区 | 国产成人亚洲精品一区二区在线看 | 精品久久看 | 久久综合九九亚洲一区 | 国产成人精品综合 | 欧美成人一级视频 | 老司机午夜性生免费福利 | 91人碰| 日韩三级在线播放 | 国产日韩不卡免费精品视频 | 免费人成年短视频在线观看免费网站 | 久久久久久在线 | 性配久久久 | 国产欧美在线观看不卡一 | 亚洲精品一区二区在线观看 | 成人免费视频播放 | 中文精品99久久国产 | 九九热视频在线免费观看 | 欧美一区二区三区不卡 | 国产精品亚洲欧美日韩久久 | 手机看片国产在线 | 成人精品第一区二区三区 | 外国成人网在线观看免费视频 | 国产一级毛片亚洲久留木玲 | 加勒比色久综合在线 | 亚洲欧洲日产国产 最新 | 在线国产观看 | 毛片大全在线观看 |