色综合图-色综合图片-色综合图片二区150p-色综合图区-玖玖国产精品视频-玖玖香蕉视频

您的位置:首頁技術文章
文章詳情頁

python map比for循環快在哪

瀏覽:3日期:2022-07-10 15:20:39

實驗結論

如果需要在循環結束后獲得結果,推薦列表解析; 如果不需要結果,直接使用for循環, 列表解析可以備選; 除了追求代碼優雅和特定規定情境,不建議使用map

如果不需要返回結果

這里有三個process, 每個任務將通過增加循環提高時間復雜度

def process1(val, type=None): chr(val % 123)def process2(val, type): if type == 'list': [process1(_) for _ in range(val)] elif type == 'for': for _ in range(val): process1(_) elif type == 'map': list(map(lambda _: process1(_), range(val)))def process3(val, type): if type == 'list': [process2(_, type) for _ in range(val)] elif type == 'for': for _ in range(val): process2(_, type) elif type == 'map': list(map(lambda _: process2(_, type), range(val)))

然后通過三種循環方式,去依次執行三種任務

def list_comp(): [process1(i, 'list') for i in range(length)] # [process2(i, 'list') for i in range(length)] # [process3(i, 'list') for i in range(length)]def for_loop(): for i in range(length): process1(i, 'for') # process2(i, 'for') # process3(i, 'for')def map_exp(): list(map(lambda v: process1(v, 'map'), range(length))) # list(map(lambda v: process2(v, 'map'), range(length))) # list(map(lambda v: process3(v, 'map'), range(length)))

python map比for循環快在哪

python map比for循環快在哪

python map比for循環快在哪

從上述的圖像中,可以直觀的看到, 隨著任務復雜度的提高以及數據量的增大,每個循環完成需要的時間也在增加,但是map方式花費的時間明顯比其他兩種要更多。 所以在不需要返回處理結果時,選擇標準for或者列表解析都可以。

因為標準for循環和列表解析方式在循環任務復雜度逐漸提高的情況下,處理時間基本沒有差異。

需要返回結果

這里有三個task, 每個任務將通過增加循環提高時間復雜度

def task1(val, type=None): return chr(val % 123)def task2(val, type): if type == 'list': return [task1(_) for _ in range(val)] elif type == 'for': res = list() for _ in range(val): res.append(task1(_)) return res elif type == 'map': return list(map(lambda _: task1(_), range(val)))def task3(val, type): if type == 'list': return [task2(_, type) for _ in range(val)] elif type == 'for': res = list() for _ in range(val): res.append(task2(_, type)) return res elif type == 'map': return list(map(lambda _: task2(_, type), range(val)))

然后通過三種循環方式,去依次執行三種任務

def list_comp(): # return [task1(i, 'list') for i in range(length)] return [task2(i, 'list') for i in range(length)] # return [task3(i, 'list') for i in range(length)]def for_loop(): res = list() for i in range(length): # res.append(task1(i, 'for')) res.append(task2(i, 'for')) # res.append(task3(i, 'for')) return resdef map_exp(): # return list(map(lambda v: task1(v, 'map'), range(length))) return list(map(lambda v: task2(v, 'map'), range(length))) # return list(map(lambda v: task3(v, 'map'), range(length)))

python map比for循環快在哪

python map比for循環快在哪

python map比for循環快在哪

從上述的圖像中,可以直觀的看到, 隨著任務復雜度的提高以及數據量的增大,每個循環完成需要的時間也在增加,但是明顯看出, 使用list_comp列表解析在, 循環需要返回處理結果的每次任務中都表現的很好,基本快于其他兩種迭代方式。

而標準for循環和map方式在循環任務復雜度逐漸提高的情況下,處理時間基本沒有差異。

為什么普遍認為map比for快?

我認為可能跟處理的數據量有關系,大部分場景下,使用者只測試了少量的數據(100W以下,比如這篇文章,就是數據量比較少,導致速度的區別不明顯),在少量的數據集下,我們確實看到了map方式比for循環快,甚至有時候比列表解析還稍微快一點,但是當我們逐漸把數據量增加原來的100倍,這時候差距的凸現出來了。

python map比for循環快在哪

如上圖,在小數據集上(100W-1KW之間), 三者消耗的時間差不多相等,但是用map方式遍歷和處理,還是有一定的加速優勢。具體實驗代碼可以通過Github獲得

以上就是python 為什么map比for循環快的詳細內容,更多關于python map和for循環的資料請關注好吧啦網其它相關文章!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 丁香狠狠色婷婷久久综合 | 精品国产一区二区三区久久 | 9999视频| 色内内免费视频播放 | 免费一级欧美大片视频在线 | 丝袜黄色片 | 不卡午夜 | 在线免费观看一区二区三区 | 免费看欧美一级特黄a毛片 免费看片aⅴ免费大片 | 在线观看人成午夜影片 | 国产在线一区二区三区欧美 | 亚洲孕交 | 国产在线观a免费观看 | 一区二区国产在线观看 | 亚洲国产一成人久久精品 | 91热国内精品永久免费观看 | 亚洲图片视频在线观看 | 天堂亚洲网 | 欧美激情综合亚洲五月蜜桃 | 亚洲欧洲精品国产二码 | 久久网站免费观看 | 色婷婷色综合激情国产日韩 | 成人午夜在线 | 亚洲综合精品成人 | 亚洲成在| 免费国产一区二区在免费观看 | 一区二区三区四区免费视频 | 久久免费资源 | 午夜精品久视频在线观看 | 中文字幕亚洲高清综合 | 欧美成人片在线 | 久久99久久精品视频 | 亚洲视频一区二区三区 | 伊人2222| 九九久久久久久久爱 | 欧美区一区二区三 | 欧美性久久久久 | 亚洲一一在线 | 国产网曝手机视频在线观看 | 久久爱一区 | 波多野结衣中文一区二区免费 |