色综合图-色综合图片-色综合图片二区150p-色综合图区-玖玖国产精品视频-玖玖香蕉视频

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

python 的numpy庫(kù)中的mean()函數(shù)用法介紹

瀏覽:56日期:2022-08-04 14:00:54

1. mean() 函數(shù)定義:

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<class numpy._globals._NoValue at 0x40b6a26c>)[source]Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64intermediate and return values are used for integer inputs.

Parameters:

a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted.

axis : None or int or tuple of ints, optional

Axis or axes along which the means are computed. The default is to compute the mean of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.

If the default value is passed, then keepdims will not be passed through to the mean method of sub-classes of ndarray, however any non-default value will be. If the sub-classes sum method does not implement keepdims any exceptions will be raised.

Returns:

m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned.

2 mean()函數(shù)功能:求取均值

經(jīng)常操作的參數(shù)為axis,以m * n矩陣舉例:

axis 不設(shè)置值,對(duì) m*n 個(gè)數(shù)求均值,返回一個(gè)實(shí)數(shù)

axis = 0:壓縮行,對(duì)各列求均值,返回 1* n 矩陣

axis =1 :壓縮列,對(duì)各行求均值,返回 m *1 矩陣

舉例:

>>> import numpy as np>>> num1 = np.array([[1,2,3],[2,3,4],[3,4,5],[4,5,6]])>>> now2 = np.mat(num1)>>> now2matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6]])>>> np.mean(now2) # 對(duì)所有元素求均值3.5>>> np.mean(now2,0) # 壓縮行,對(duì)各列求均值matrix([[ 2.5, 3.5, 4.5]])>>> np.mean(now2,1) # 壓縮列,對(duì)各行求均值matrix([[ 2.], [ 3.], [ 4.], [ 5.]])

補(bǔ)充拓展:numpy的np.nanmax和np.max區(qū)別(坑)

numpy的np.nanmax和np.array([1,2,3,np.nan]).max()的區(qū)別(坑)

numpy中numpy.nanmax的官方文檔

原理

在計(jì)算dataframe最大值時(shí),最先用到的一定是Series對(duì)象的max()方法(),最終結(jié)果是4。

s1 = pd.Series([1,2,3,4,np.nan])s1_max = s1.max()

但是筆者由于數(shù)據(jù)量巨大,列數(shù)較多,于是為了加快計(jì)算速度,采用numpy進(jìn)行最大值的計(jì)算,但正如以下代碼,最終結(jié)果得到的是nan,而非4。發(fā)現(xiàn),采用這種方式計(jì)算最大值,nan也會(huì)包含進(jìn)去,并最終結(jié)果為nan。

s1 = pd.Series([1,2,3,4,np.nan])s1_max = s1.values.max()>>>nan

通過(guò)閱讀numpy的文檔發(fā)現(xiàn),存在np.nanmax的函數(shù),可以將np.nan排除進(jìn)行最大值的計(jì)算,并得到想要的正確結(jié)果。

當(dāng)然不止是max,min 、std、mean 均會(huì)存在列中含有np.nan時(shí),s1.values.min /std/mean ()返回nan的情況。

速度區(qū)別

速度由快到慢依次:

s1 = pd.Series([1,2,3,4,5,np.nan])#速度由快至慢np.nanmax(s1.values) > np.nanmax(s1) > s1.max()

以上這篇python 的numpy庫(kù)中的mean()函數(shù)用法介紹就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持好吧啦網(wǎng)。

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 成人在线免费网站 | 91精品亚洲| 俄罗斯aa毛片极品 | 一级毛片免费不卡在线 | 久久精品中文字幕首页 | 成年大片免费视频播放二级 | 欧美三级视频在线观看 | 手机毛片 | 久久免费视频6 | 国产精品高清在线 | 大焦伊人| 国产精品久久福利网站 | 深夜做爰性大片中文 | 日本欧美在线视频 | 亚洲高清在线观看 | 亚洲欧洲国产成人综合一本 | 久久久久久亚洲精品影院 | 色偷偷亚洲女人天堂观看欧 | 91久久香蕉 | 九九视频免费精品视频免费 | 国产成人精品天堂 | 在线视频欧美亚洲 | 九九精品激情在线视频 | 免费看的一级片 | 青草福利在线 | 一级毛片真人不卡免费播 | 一级一片在线播放在线观看 | 一级片免费观看 | 亚洲国产日韩欧美一区二区三区 | 在线视频免费国产成人 | 在线中文 | 成人精品网 | 精品午夜寂寞影院在线观看 | 初爱视频教程在线观看高清 | 手机国产精品一区二区 | 国产高清一区二区三区视频 | 丝袜精品 欧美 亚洲 自拍 | 日韩毛片免费线上观看 | 国产亚洲精品资源一区 | 天天看夜夜看 | 美女张开腿让男人捅的视频 |