色综合图-色综合图片-色综合图片二区150p-色综合图区-玖玖国产精品视频-玖玖香蕉视频

您的位置:首頁技術文章
文章詳情頁

Python實現GPU加速的基本操作

瀏覽:31日期:2022-08-07 08:33:11
目錄CUDA的線程與塊用GPU打印線程編號用GPU打印塊編號用GPU打印塊的維度用GPU打印線程的維度總結GPU所支持的最大并行度GPU的加速效果總結概要CUDA的線程與塊

GPU從計算邏輯來講,可以認為是一個高并行度的計算陣列,我們可以想象成一個二維的像圍棋棋盤一樣的網格,每一個格子都可以執行一個單獨的任務,并且所有的格子可以同時執行計算任務,這就是GPU加速的來源。那么剛才所提到的棋盤,每一列都認為是一個線程,并有自己的線程編號;每一行都是一個塊,有自己的塊編號。我們可以通過一些簡單的程序來理解這其中的邏輯:

用GPU打印線程編號

# numba_cuda_test.pyfrom numba import cuda@cuda.jitdef gpu(): print (’threadIdx:’, cuda.threadIdx.x)if __name__ == ’__main__’: gpu[2,4]()

threadIdx: 0threadIdx: 1threadIdx: 2threadIdx: 3threadIdx: 0threadIdx: 1threadIdx: 2threadIdx: 3用GPU打印塊編號

# numba_cuda_test.pyfrom numba import cuda@cuda.jitdef gpu(): print (’blockIdx:’, cuda.blockIdx.x)if __name__ == ’__main__’: gpu[2,4]()

blockIdx: 0blockIdx: 0blockIdx: 0blockIdx: 0blockIdx: 1blockIdx: 1blockIdx: 1blockIdx: 1用GPU打印塊的維度

# numba_cuda_test.pyfrom numba import cuda@cuda.jitdef gpu(): print (’blockDim:’, cuda.blockDim.x)if __name__ == ’__main__’: gpu[2,4]()

blockDim: 4blockDim: 4blockDim: 4blockDim: 4blockDim: 4blockDim: 4blockDim: 4blockDim: 4用GPU打印線程的維度

# numba_cuda_test.pyfrom numba import cuda@cuda.jitdef gpu(): print (’gridDim:’, cuda.gridDim.x)if __name__ == ’__main__’: gpu[2,4]()

gridDim: 2gridDim: 2gridDim: 2gridDim: 2gridDim: 2gridDim: 2gridDim: 2gridDim: 2總結

我們可以用如下的一張圖來總結剛才提到的GPU網格的概念,在上面的測試案例中,我們在GPU上劃分一塊2*4大小的陣列用于我們自己的計算,每一行都是一個塊,每一列都是一個線程,所有的網格是同時執行計算的內容的(如果沒有邏輯上的依賴的話)。

Python實現GPU加速的基本操作

GPU所支持的最大并行度

我們可以用幾個簡單的程序來測試一下GPU的并行度,因為每一個GPU上的網格都可以獨立的執行一個任務,因此我們認為可以分配多少個網格,就有多大的并行度。本機的最大并行應該是在(2^40),因此假設我們給GPU分配(2^50)大小的網格,程序就會報錯:

# numba_cuda_test.pyfrom numba import cuda@cuda.jitdef gpu(): passif __name__ == ’__main__’: gpu[2**50,1]() print (’Running Success!’)

運行結果如下:

Traceback (most recent call last):File 'numba_cuda_test.py', line 10, in <module>gpu[2**50,1]()File '/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/compiler.py', line 822, in __call__self.stream, self.sharedmem)File '/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/compiler.py', line 966, in callkernel.launch(args, griddim, blockdim, stream, sharedmem)File '/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/compiler.py', line 699, in launchcooperative=self.cooperative)File '/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/cudadrv/driver.py', line 2100, in launch_kernelNone)File '/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/cudadrv/driver.py', line 300, in safe_cuda_api_callself._check_error(fname, retcode)File '/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/cudadrv/driver.py', line 335, in _check_errorraise CudaAPIError(retcode, msg)numba.cuda.cudadrv.driver.CudaAPIError: [1] Call to cuLaunchKernel results in CUDA_ERROR_INVALID_VALUE

而如果我們分配一個額定大小之內的網格,程序就可以正常的運行:

# numba_cuda_test.pyfrom numba import cuda@cuda.jitdef gpu(): passif __name__ == ’__main__’: gpu[2**30,1]() print (’Running Success!’)

這里加了一個打印輸出:

Running Success!

需要注意的是,兩個維度上的可分配大小是不一致的,比如本機的上限是分配230*210大小的空間用于計算:

# numba_cuda_test.pyfrom numba import cuda@cuda.jitdef gpu(): passif __name__ == ’__main__’: gpu[2**30,2**10]() print (’Running Success!’)

同樣的,只要在允許的范圍內都是可以執行成功的:

Running Success!

如果在本機上有多塊GPU的話,還可以通過select_device的指令來選擇執行指令的GPU編號:

# numba_cuda_test.pyfrom numba import cudacuda.select_device(1)import time@cuda.jitdef gpu(): passif __name__ == ’__main__’: gpu[2**30,2**10]() print (’Running Success!’)

如果兩塊GPU的可分配空間一致的話,就可以運行成功:

Running Success!

GPU的加速效果

前面我們經常提到一個詞叫GPU加速,GPU之所以能夠實現加速的效果,正源自于GPU本身的高度并行性。這里我們直接用一個數組求和的案例來說明GPU的加速效果,這個案例需要得到的結果是(b_j=a_j+b_j),將求和后的值賦值在其中的一個輸入數組之上,以節省一些內存空間。當然,如果這個數組還有其他的用途的話,是不能這樣操作的。具體代碼如下:

# gpu_add.pyfrom numba import cudacuda.select_device(1)import numpy as npimport time@cuda.jitdef gpu(a,b,DATA_LENGHTH): idx = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x if idx < DATA_LENGHTH:b[idx] += a[idx]if __name__ == ’__main__’: np.random.seed(1) DATA_EXP_LENGTH = 20 DATA_DIMENSION = 2**DATA_EXP_LENGTH np_time = 0.0 nb_time = 0.0 for i in range(100):a = np.random.randn(DATA_DIMENSION).astype(np.float32)b = np.random.randn(DATA_DIMENSION).astype(np.float32)a_cuda = cuda.to_device(a)b_cuda = cuda.to_device(b)time0 = time.time()gpu[DATA_DIMENSION,4](a_cuda,b_cuda,DATA_DIMENSION)time1 = time.time()c = b_cuda.copy_to_host()time2 = time.time()d = np.add(a,b)time3 = time.time()if i == 0: print (’The error between numba and numpy is: ’, sum(c-d)) continuenp_time += time3 - time2nb_time += time1 - time0 print (’The time cost of numba is: {}s’.format(nb_time)) print (’The time cost of numpy is: {}s’.format(np_time))

需要注意的是,基于Numba實現的Python的GPU加速程序,采用的jit即時編譯的模式,也就是說,在運行調用到相關函數時,才會對其進行編譯優化。換句話說,第一次執行這一條指令的時候,事實上達不到加速的效果,因為這個運行的時間包含了較長的一段編譯時間。但是從第二次運行調用開始,就不需要重新編譯,這時候GPU加速的效果就體現出來了,運行結果如下:

$ python3 gpu_add.py The error between numba and numpy is: 0.0The time cost of numba is: 0.018711328506469727sThe time cost of numpy is: 0.09502553939819336s

可以看到,即使是相比于Python中優化程度十分強大的的Numpy實現,我們自己寫的GPU加速的程序也能夠達到5倍的加速效果(在前面一篇博客中,針對于特殊計算場景,加速效果可達1000倍以上),而且可定制化程度非常之高。

總結概要

本文針對于Python中使用Numba的GPU加速程序的一些基本概念和實現的方法,比如GPU中的線程和模塊的概念,以及給出了一個矢量加法的代碼案例,進一步說明了GPU加速的效果。需要注意的是,由于Python中的Numba實現是一種即時編譯的技術,因此第一次運算時的時間會明顯較長,所以我們一般說GPU加速是指從第二步開始的運行時間。對于一些工業和學界常見的場景,比如分子動力學模擬中的系統演化,或者是深度學習與量子計算中的參數優化,都是相同維度參數多步運算的一個過程,非常適合使用即時編譯的技術,配合以GPU高度并行化的加速效果,能夠在實際工業和學術界的各種場景下發揮巨大的作用。

到此這篇關于Python實現GPU加速的基本操作的文章就介紹到這了,更多相關Python GPU加速內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 成人午夜性视频欧美成人 | 九九99九九在线精品视频 | 欧美性xxxx极品高清 | 国产区香蕉精品系列在线观看不卡 | 被老外玩爽的中国美女视频 | 一级毛片免费视频网站 | 国产日韩欧美一区二区三区在线 | 操欧美美女 | 欧美怡红院高清在线 | 日本尹人综合香蕉在线观看 | 欧美一级毛片片免费孕妇 | 欧美午夜a级精美理论片 | 国产亚洲欧美日韩在线看片 | 深夜国产 | 一级毛片不卡片免费观看 | 久久亚洲国产最新网站 | 亚洲性综合 | 黄色a免费 | 欧美在线观看视频一区 | 99视频在线精品免费 | 亚洲国产综合久久精品 | 亚洲精品视频免费 | 亚洲欧美日韩国产精品影院 | 亚洲国产日韩在线 | 99在线观看视频 | 久久福利影视 | 国产乱码精品一区二区三区四川人 | 久久久国产高清 | 久久久精品久久久久久久久久久 | 99精品国产一区二区三区 | 国产精品国产亚洲精品看不卡 | 欧美日韩精品一区二区三区高清视频 | 成人免费一区二区三区视频软件 | www.91免费视频 | 日日狠狠久久偷偷四色综合免费 | 国产成人一区免费观看 | 91香蕉国产线在线观看免费 | 色久激情 | 悟空影视大全免费高清 | 日本一二线不卡在线观看 | 欧美精品国产一区二区三区 |