python第三方庫visdom的使用入門教程
Visdom:一個靈活的可視化工具,可用來對于 實時,富數(shù)據(jù)的 創(chuàng)建,組織和共享。支持Torch和Numpy還有pytorch。
visdom可以實現(xiàn)遠(yuǎn)程數(shù)據(jù)的可視化,對科學(xué)實驗有很大幫助。我們可以遠(yuǎn)程的發(fā)送圖片和數(shù)據(jù),并進(jìn)行在ui界面顯示出來,檢查實驗結(jié)果,或者debug.
要用這個先要安裝,對于python模塊而言,安裝都是蠻簡單的:
pip install visdom
安裝完每次要用直接輸入代碼打開:
python -m visdom.server
然后根據(jù)提示在瀏覽器中輸入相應(yīng)地址即可,默認(rèn)地址為:http://localhost:8097/
使用示例1. vis.text(), vis.image()import visdom # 添加visdom庫import numpy as np # 添加numpy庫vis = visdom.Visdom(env=’test’) # 設(shè)置環(huán)境窗口的名稱,如果不設(shè)置名稱就默認(rèn)為mainvis.text(’test’, win=’main’) # 使用文本輸出vis.image(np.ones((3, 100, 100))) # 繪制一幅尺寸為3 * 100 * 100的圖片,圖片的像素值全部為1
其中:
visdom.Visdom(env=‘命名新環(huán)境’)vis.text(‘文本’, win=‘環(huán)境名’)vis.image(‘圖片’,win=‘環(huán)境名’)
import visdomimport numpy as npvis = visdom.Visdom(env=’my_windows’) # 設(shè)置環(huán)境窗口的名稱,如果不設(shè)置名稱就默認(rèn)為mainx = list(range(10))y = list(range(10))# 使用line函數(shù)繪制直線 并選擇顯示坐標(biāo)軸vis.line(X=np.array(x), Y=np.array(y), opts=dict(showlegend=True))
vis.line([x], [y], opts=dict(showlegend=True)[展示說明])
兩條
import visdomimport numpy as npvis = visdom.Visdom(env=’my_windows’)x = list(range(10))y = list(range(10))z = list(range(1,11))vis.line(X=np.array(x), Y=np.column_stack((np.array(y), np.array(z))), opts=dict(showlegend=True))
vis.line([x], [y=np.column_stack((np.array(y),np.array(z),np.array(還可以增加)))])np.column_stack(a,b), 表示兩個矩陣按列合并
import visdomimport torchvis = visdom.Visdom(env=’sin’)x = torch.arange(0, 100, 0.1)y = torch.sin(x)vis.line(X=x,Y=y,win=’sin(x)’,opts=dict(showlegend=True))
import visdomimport numpy as npvis = visdom.Visdom(env=’my_windows’)# 利用update更新圖像x = 0y = 0my_win = vis.line(X=np.array([x]), Y=np.array([y]), opts=dict(title=’Update’))for i in range(10): x += 1 y += i vis.line(X=np.array([x]), Y=np.array([y]), win=my_win, update=’append’)
使用“append”追加數(shù)據(jù),“replace”使用新數(shù)據(jù),“remove”用于刪除“name”中指定的跟蹤。
import visdomimport torch# 新建一個連接客戶端# 指定env = ’test1’,默認(rèn)是’main’,注意在瀏覽器界面做環(huán)境的切換vis = visdom.Visdom(env=’test1’)# 繪制正弦函數(shù)x = torch.arange(1, 100, 0.01)y = torch.sin(x)vis.line(X=x,Y=y, win=’sinx’,opts={’title’:’y=sin(x)’})# 繪制36張圖片隨機的彩色圖片vis.images(torch.randn(36,3,64,64).numpy(),nrow=6, win=’imgs’,opts={’title’:’imgs’})
#繪制loss變化趨勢,參數(shù)一為Y軸的值,參數(shù)二為X軸的值,參數(shù)三為窗體名稱,參數(shù)四為表格名稱,參數(shù)五為更新選項,從第二個點開始可以更新vis.line(Y=np.array([totalloss.item()]), X=np.array([traintime]),win=(’train_loss’),opts=dict(title=’train_loss’),update=None if traintime == 0 else ’append’)
對于Visdom更詳細(xì)的代碼示例詳見 鏈接1
更多介紹詳見 鏈接2
實際代碼此代碼出自CycleGAN的 utils.py 里一個實現(xiàn)
# 記錄訓(xùn)練日志,顯示生成圖,畫loss曲線 的類class Logger(): def __init__(self, n_epochs, batches_epoch):’’’:param n_epochs: 跑多少個epochs:param batches_epoch: 一個epoch有幾個batches’’’self.viz = Visdom() # 默認(rèn)env是main函數(shù)self.n_epochs = n_epochsself.batches_epoch = batches_epochself.epoch = 1 # 當(dāng)前epoch數(shù)self.batch = 1 # 當(dāng)前batch數(shù)self.prev_time = time.time()self.mean_period = 0self.losses = {}self.loss_windows = {} # 保存loss圖的字典集合self.image_windows = {} # 保存生成圖的字典集合 def log(self, losses=None, images=None):self.mean_period += (time.time() - self.prev_time)self.prev_time = time.time()sys.stdout.write(’rEpoch %03d/%03d [%04d/%04d] -- ’ % (self.epoch, self.n_epochs, self.batch, self.batches_epoch))for i, loss_name in enumerate(losses.keys()): if loss_name not in self.losses:self.losses[loss_name] = losses[loss_name].data.item() #這里losses[loss_name].data是個tensor(包在值外面的數(shù)據(jù)結(jié)構(gòu)),要用item方法取值 else:self.losses[loss_name] = losses[loss_name].data.item() if (i + 1) == len(losses.keys()):sys.stdout.write(’%s: %.4f -- ’ % (loss_name, self.losses[loss_name]/self.batch)) else:sys.stdout.write(’%s: %.4f | ’ % (loss_name, self.losses[loss_name]/self.batch))batches_done = self.batches_epoch * (self.epoch - 1) + self.batchbatches_left = self.batches_epoch * (self.n_epochs - self.epoch) + self.batches_epoch - self.batchsys.stdout.write(’ETA: %s’ % (datetime.timedelta(seconds=batches_left*self.mean_period/batches_done)))# 顯示生成圖for image_name, tensor in images.items(): # 字典.items()是以list形式返回鍵值對 if image_name not in self.image_windows:self.image_windows[image_name] = self.viz.image(tensor2image(tensor.data), opts={’title’:image_name}) else:self.viz.image(tensor2image(tensor.data), win=self.image_windows[image_name], opts={’title’:image_name})# End of each epochif (self.batch % self.batches_epoch) == 0: # 一個epoch結(jié)束時 # 繪制loss曲線圖 for loss_name, loss in self.losses.items():if loss_name not in self.loss_windows: self.loss_windows[loss_name] = self.viz.line(X=np.array([self.epoch]), Y=np.array([loss/self.batch]), opts={’xlabel’:’epochs’, ’ylabel’:loss_name, ’title’:loss_name})else: self.viz.line(X=np.array([self.epoch]), Y=np.array([loss/self.batch]), win=self.loss_windows[loss_name], update=’append’) #update=’append’可以使loss圖不斷更新# 每個epoch重置一次lossself.losses[loss_name] = 0.0 # 跑完一個epoch,更新一下下面參數(shù) self.epoch += 1 self.batch = 1 sys.stdout.write(’n’)else: self.batch += 1
train.py中調(diào)用代碼是
# 繪畫Loss圖logger = Logger(opt.n_epochs, len(dataloader))for epoch in range(opt.epoch, opt.n_epochs): for i, batch in enumerate(dataloader):......# 記錄訓(xùn)練日志 # Progress report (http://localhost:8097) 顯示visdom畫圖的網(wǎng)址 logger.log({’loss_G’: loss_G, ’loss_G_identity’: (loss_identity_A + loss_identity_B),’loss_G_GAN’: (loss_GAN_A2B + loss_GAN_B2A),’loss_G_cycle’: (loss_cycle_ABA + loss_cycle_BAB), ’loss_D’: (loss_D_A + loss_D_B)}, images={’real_A’: real_A, ’real_B’: real_B, ’fake_A’: fake_A, ’fake_B’: fake_B})
到此這篇關(guān)于python第三方庫visdom的使用入門教程的文章就介紹到這了,更多相關(guān)python visdom使用內(nèi)容請搜索好吧啦網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持好吧啦網(wǎng)!
相關(guān)文章:
1. jsp網(wǎng)頁實現(xiàn)貪吃蛇小游戲2. SpringMVC+Jquery實現(xiàn)Ajax功能3. JavaScript實現(xiàn)組件化和模塊化方法詳解4. 關(guān)于Ajax跨域問題及解決方案詳析5. .Net Core和RabbitMQ限制循環(huán)消費的方法6. ASP.NET MVC遍歷驗證ModelState的錯誤信息7. PHP設(shè)計模式中工廠模式深入詳解8. ASP中if語句、select 、while循環(huán)的使用方法9. 刪除docker里建立容器的操作方法10. asp(vbs)Rs.Open和Conn.Execute的詳解和區(qū)別及&H0001的說明
